

Axial Piston Variable Double Pump A24VG

RE 93240/06.12 1/38

Data sheet

Series 10 Size 045-045 / 065-045 / 065-065 Nominal pressure 450 bar Maximum pressure 500 bar Closed circuit

Contents

Ordering code for standard program	2
Technical data	6
HT – Hydraulic control, direct controlled	11
HP - Proportional control hydr., pilot-pressure related	12
HW - Proportional control hydraulic, mechanical servo	14
EP – Proportional control electric	16
EZ – Two-point control electric	18
EV - Electric control, direct controlled	19
Dimensions size 045-045	20
Dimensions size 065-045	22
Dimensions size 065-065	24
Through drive dimensions	26
Overview of mounting options	28
Pressure cut-off	29
High-pressure relief valves	30
Mechanical stroke limiter	31
Ports X_3 and X_4 for stroking chamber pressure	31
Filtration boost circuit / external supply	32
Connector for solenoids	33
Speed sensor	33
Swivel angle sensor	34
Installation dimensions for coupling assembly	35
Installation instructions	36
General instructions	38

Features

- Variable double pump with two axial piston rotary groups of swashplate design for hydrostatic drives in closed circuit
- The flow is proportional to the drive speed and displacement
- Two flows independent of each other
- The flow can be infinitely varied by adjusting the swashplate angle
- Flow direction changes smoothly when the swashplate is moved through the neutral position
- A wide range of highly adaptable control devices with different control and regulating functions, for all important applications
- Four pressure relief valves are provided on the high-pressure side to protect the hydrostatic transmission (pump and motor) from overload
- The high-pressure relief valves also function as boost valves
- The maximum boost pressure is limited by a built-in low-pressure relief valve
- High pressure level for high power density and good efficiency
- Compact design for tight installation conditions
- Optional through drive for mounting additional pumps

G

Ordering code for standard program

A24V	G								0	/	10	Μ						-	
01	02	03	04	05	06	07	08	09	10		11	12	13	14	15	16	17		18

Axial piston unit

Operating mode

02 Double pump, closed circuit

01 S	Swashplate design, variable, nomina	ressure 450 bar, maximum pressure 500 bar	A24V
------	-------------------------------------	---	------

Sizes (NG)

	Geometric displacement, see t	able of values on page 9]
	1st pump	2nd pump	
03	NG045	NG045	045-045
	NG065	NG045	065-045
	NG065	NG065	065-065

Control devices, 1st pump

	Proportional control	pilot-pressure related	p = 6 to 18 bar	•	HP1
	hydraulic	mechanical servo,		•	HW2
		hexagon shaft with lever, free position ¹⁾	with neutral position switch	•	HW8
	Proportional control		U = 12 V DC	•	EP1
	electric		U = 24 V DC	•	EP2
04	Two-point control		U = 12 V DC	•	EZ1
	electric		U = 24 V DC	•	EZ2
	Hydraulic control, direct of	controlled		•	HT1
	Electric control, direct co		U = 12 V DC	0	EV1
	with one pressure reducir and 4/3-directional valve	ig valve (DRE)	U = 24 V DC	0	EV2

Control devices, 2nd pump

	Proportional control	pilot-pressure related	p = 6 to 18 bar	•	HP1
	hydraulic	mechanical servo,		•	HW2
		hexagon shaft with lever, free position ¹⁾	with neutral position switch	•	HW8
	Proportional control		U = 12 V DC	•	EP1
05	electric		U = 24 V DC	•	EP2
05	Two-point control		U = 12 V DC	•	EZ1
	electric		U = 24 V DC	•	EZ2
	Hydraulic control, direct	controlled		•	HT1
	Electric control, direct c	,	U = 12 V DC	О	EV1
	with one pressure reduct and 4/3-directional value		U = 24 V DC	0	EV2

• = Available O = On request - = Not available

¹⁾ On delivery, the position of the lever may differ from that shown in the brochure or drawing. If necessary, the position of the lever can be adjusted by the customer.

Ordering code for standard program

	424V	G	0.0	0.4	0.5	00	07	00	0.0	0	/	10	M	10	4.4	45	10	40		10
	01	02	03	04	05	06	07	08	09	10		11	12	13	14	15	16	17		18
	Pressure o	sut-off	(see	nage (31)															
	Pump 1		(000	pago		Pump	2											045	065	
	Without p	ressur	e cut-o	off		Witho		ssure	cut-of	f									•	0
06	1x pressur						•												•	w
	With press	sure ci	ut-off			Witho	ut pre	ssure	cut-of	f									•	Р
	Without p	ressur	e cut-o	off		With p	oressu	re cut	-off										•	L
	Swivel and	ale sei	nsor (see pa	aae 34	L)														
	Without sv				-	,														0
07	Electric sv					ed to	pumps	s 1 an	d 2 ²⁾										-	т
	Additional	functi	ion fo	r num	n 1 (a	00 000	70 21)													
ĺ	Without a				P 1 (5	εε μαί	<u>je 51/</u>													0
	Mechanica				ternally	v adjus	stable													м
80	Ports X ₃ , X																			т
	Mechanica			-																В
	Aditional	funct	ion fo		n 0 (a		~~ 21)													
	Additional Without ad				p z (s	ee paę	ge 31)													0
	Mechanica				ternally	v adius	stable													м
09	Ports X ₃ , X																			Т
	Mechanica			-																B
10	DA control Without D																			0
10		A COIL	li Ui Va																	0
	Series																			
11	Series 1, i	ndex 0)																	10
	Configurat	tion of	ports	and	faster	ing th	reads	;												
12	Metric, po	rt threa	ads wi	ith O-r	ing se	al acc	ording	to IS	O 614	9										M
	Directions	of rot	ation																	
10	Viewed or	n drive	shaft											(clockv	vise				R
13														(counte	er-cloc	kwise			L
	Mounting	flance	s (pu	mp 1)													045	0	65	
	SAE J744				27-2												•		_	C
14				12	27-2/4												-		Ð	Ce
										()										
	Drivo chaf	te (nu	mn 1	Inorm	hiogibl	ainnui	t torau	00 000	annar	101							045	∩	65	
	Drive shaf Splined sh		mp 1)			e input 21T 1			e page	9 10)							045	0	65 -	Va

 \bullet = Available

O = On request

- = Not available

= Preferred program

2) Please contact us if the swivel angle sensor is used for control.

Ordering code for standard program

A24V	G								0	1	10	Μ						–	
01	02	03	04	05	06	07	08	09	10		11	12	13	14	15	16	17		18

Through drives (mounting options see page 28)

	Flange SAE J744			Couplin	g for splined sha	ft ³⁾]		
		Mounting va	riant						
	Diameter	Symbol ⁴⁾	Designation	Diamete	er	Designation	045	065	
	Without through	drive					•	•	0000
	82-2 (A)	8	A1	5/8 in	9T 16/32DP	S2	0	0	A1S2
				3/4 in	11T 16/32DP	S3	0	0	A1S3
		~~	A2	5/8 in	9T 16/32DP	S2	0	0	A2S2
				3/4 in	11T 16/32DP	S3	0	0	A2S3
	101-2 (B)	8	B1	7/8 in	13T 16/32DP	S4	0	0	B1S4
				1 in	15T 16/32DP	S5	0	0	B1S5
		0-0	B2	7/8 in	13T 16/32DP	S4	•	0	B2S4
10				1 in	15T 16/32DP	S5	•	0	B2S5
16		°	B5	7/8 in	13T 16/32DP	S4	0	0	B5S4
				1 in	15T 16/32DP	S5	0	0	B5S5
	101-4 (B)	СС СС	B4	7/8 in	13T 16/32DP	S4	0	0	B4S4
				1 in	15T 16/32DP	S5	0	0	B4S5
	127-2 (C)	8	C1	1 in	15T 16/32DP	S5	0	0	C1S5
				1 1/4 in	14T 12/24DP	S7	-	0	C1S7
		⊶	C2	1 in	15T 16/32DP	S5	0	0	C2S5
				1 1/4 in	14T 12/24DP	S7	-	0	C2S7
		op	C5	1 in	15T 16/32DP	S5	0	0	C5S5
				1 1/4 in	14T 12/24DP	S7	-	0	C5S7
	127-4 (C)	ж	C4	1 in	15T 16/32DP	S5	0	0	C4S5
				1 1/4 in	14T 12/24DP	S7	-	0	C4S7

Selection of other features

17 See table on page 5

Standard / special version

	Standard version	0	
18	Standard version with installation variants, e. g. T ports against standard open or closed	Y	
	Special version	S	

• = Available O = On request - = Not available

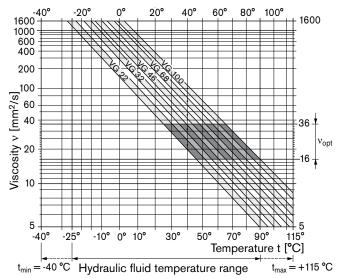
3) Coupling for splined shaft according to ANSI B92.1a

4) Mounting drillings pattern viewed on through drive with control at top

Ordering code for standard program

	A24V	G								0	1	10	М				Τ	Т		_	.	
	01	02	03	04	05	06	07	08	09	10		11	12	13	14	15	1	6	17			18
	Selection	of oth	er fea	tures							-						A1	A2	А3	A 4	B1	B2
	Connecto	r contr	ol mo	dule ⁵⁾	V	Vithou	t conr	nector	(only f	or hyc	Iraulic	contro	ol)							Х	Х	
	pump 1					DEUTS	SCH -	molde	d con	nector	, 2-pir	n – wit	hout s	uppre	ssor d	iode	Х	Х	Х			X
	Connecto	r contr	ol mo	dule ⁵⁾	١	Vithou	t conr	nector	(only f	or hyc	Iraulic	contro	ol)							Х	Х	
	pump 2					DEUTS	SCH -	molde	d con	nector	; 2-pir	n – wit	hout s	uppre	ssor d	iode	Х	Х	Х			X
	Seals				١	VBR (r	nitrile-o	caouto	houc)	, shaft	seal i	n FKM	(fluor-	caout	chouc	;)	Х	Х	Х	Х	Х	X
	Service lir	ne port	S			hread			е								x	x			х	
						hread			de										х			
	Boost pur	np			V	Vithou	t boos	st pum	р								Х	Х	Х	Х	Х	X
	High-pres	sure		Pump	1 C	Direct o	contro	lled, fi	xed se	tting,	withou	ut bypa	iss				Х	Х	Х		Х	X
	relief valve	e HD		Pump	2 C	Direct o	contro	lled, fi	xed se	etting,	withou	ut bypa	iss				Х	Х	Х		Х	X
17	Low-press relief valve				F	ixed s	etting										х	х	х		х	x
	Pressure s	sensor	I	Pump	1 \	Vithou	t pres	sure s	ensor								Х	Х	Х	Х	Х	X
					4	At mea	suring	port I	M _A													
					4	At mea	suring	port I	И _в													
				Pump	2 V	Vithou	t pres	sure s	ensor								Х	Х	Х	Х	Х	X
					4	At mea	suring	port I	M _A													
					Ā	At mea	suring	port I	И _В													
	Speed set	nsor			V	Vithou	t spee	ed sen	sor									х	Х	Х	Х	Х
					[DSA sp	beed s	ensor	moun	ted ⁶⁾							Х					
	Other sen	sors		Pump	1 \	Vithou	t sens	ors									Х	Х	Х	Х	Х	Х
				Pump	2 \	Vithou	t sens	ors									Х	Х	Х	Х	Х	Х

⁵⁾ Connectors for other electric components can deviate.


⁶⁾ Specify ordering code of sensor according to data sheet (DSA – RE 95133) separately and observe the requirements on the electronics.

Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids) and RE 90222 (HFD hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

The variable double pump A24VG is not suitable for operation with HFA, HFB and HFC hydraulic fluids. If HFD or environmentally acceptable hydraulic fluids are used, the limitations regarding technical data or other seals must be observed. Please contact us.

Selection diagram

Viscosity and temperature of hydraulic fluid

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in a closed circuit, the circuit temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (v_{opt} see shaded area of the selection diagram). We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X °C, an operating temperature of 60 °C is set in the circuit. In the optimum operating viscosity range (v_{opt} , shaded area), this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Note

The case drain temperature, which is affected by pressure and speed, can be higher than the circuit temperature. At no point of the component may the temperature be higher than 115 °C. The temperature difference specified below is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, please contact us.

servation: up to 12 months with standard, nonths with long-term without load ($p \le 50$ bar), $n \le 1000$ rpm xial piston unit and hydraulic fluid
xial piston unit and hydraulic fluid
1
$p_{nom},n\leq 0.5$ \bullet n_{nom} and $t\leq 15$ min
ydraulic fluid in the bearing and at port T.
ing
at port T
at port T, on within the permissible data
at port T, t < 3 min, p < 0.3 • p _{nom}
7
i a a

1) At temperatures below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

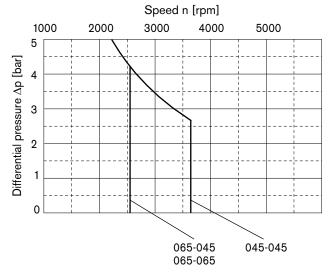
To ensure the functional reliability of the axial piston unit, a gravimetric analysis of the hydraulic fluid is necessary to determine the amount of solid contaminant and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained.

Depending on the system and the application, for the A24VG, we recommend

Filter cartridges $\beta_{20} \ge 100$.

With an increasing differential pressure at the filter cartridges, the β value must not deteriorate.

At very high hydraulic fluid temperatures (90 °C to maximum 115 °C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.


If the above classes cannot be achieved, please contact us.

Shaft seal

Permissible pressure loading

The service life of the shaft seal is influenced by the speed of the axial piston unit and the case drain pressure (case pressure p_G). The mean differential pressure of 2 bar between the case and the ambient pressure may not be enduringly exceeded at normal operating temperature. For a higher differential pressure at reduced speed, see diagram. Momentary pressure spikes (t < 0.1 s) of up to 10 bar are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.

The case pressure must be equal to or higher than the ambient pressure.

These values are valid for an ambient pressure $p_{abs} = 1$ bar.

Temperature range

The FKM shaft seal may be used for case drain temperatures from -25 $^{\circ}$ C to +115 $^{\circ}$ C.

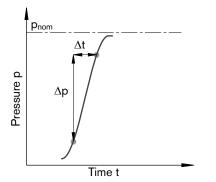
Note

For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C). State NBR shaft seal in plain text when ordering. Please contact us.

Operating pressure range

(operating with mineral oil)

Pressure at service line port A₁, A₂ or B₁, B₂


Nominal pressure pnom _____ 450 bar absolute

Maximum pressure pmax	 500 bar absolute
Single operating period	10 s
Total operating period	300 h

Minimum pressure (high-pressure side) 25 bar absolute

Minimum pressure (low-pressure side) ____ 10 bar above p_G (boost pressure setting must be higher depending on system)

Rate of pressure change R_{A max} _____ 9000 bar/s

Control pressure

To ensure the function of the control, the following control pressure is required depending on the speed and operating pressure (measuring point, port P_S):

____ 20 bar above p_G

For controls EP, HW and HP Minimum control pressure $p_{St min}$ (at n = 2000 rpm)

For controls HT, EV, EZ Minimum control pressure $p_{St min}$ (at n = 2000 rpm) _____ 25 bar above p_G

Note

Values for other hydraulic fluids, please contact us

 $p_G = case pressure$

Definition

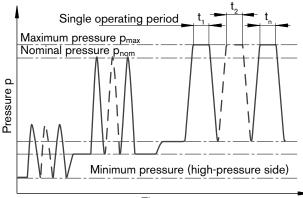
Nominal pressure pnom

The nominal pressure corresponds to the maximum design pressure.

Maximum pressure pmax

The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Minimum pressure (high-pressure side)


Minimum pressure at the high-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.

Minimum pressure (low-pressure side)

Minimum pressure at the low-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.

Rate of pressure change RA

Maximum permissible rate of pressure rise and reduction during a pressure change over the entire pressure range.

Time t

Total operating period = $t_1 + t_2 + ... + t_n$

Table of values (theoretical values, without efficiency and tolerances; values rounded)

Size			NG		045-045	065-045	065-065	
Displacement geom	etric, per	revol	ution					
variable double p	ump			V _{g max}	cm ³	2 x 45.3	1 x 65.2 + 1 x 45.3	2 x 65.2
Speed ¹⁾								
maximum at V _{g I}	max			n _{nom}	rpm	3700	2600	2600
at $\Delta p \ge 40$ bar	(t < 15 s)			n _{max 40}	rpm	3900	2800	2800
minimum				n _{min}	rpm	500	500	500
Flow								
at n_{nom} and $V_{g m}$	nax			q _v	L/min	2 x 168	1 x 170 + 1 x 118	2 x 170
Power ²⁾								
at n _{nom} , V _{g max} a	nd $\Delta p = 4$	430 b	ar	Р	kW	240	206	243
Torque ²⁾								
at $V_{g max}$ and	$\Delta p = 43$	$\Delta p = 430 \text{ bar}$		Т	Nm	620	756	892
	$\Delta p = 10$	$\Delta p = 100 \text{ bar}$			Nm	144	176	208
Rotary stiffness ³⁾	1 3/8	V8	pump 1	c1	kNm/rad	97	-	-
drive shaft			pump 2	c2	kNm/rad	20	-	_
	1 1/2	S9	pump 1	c1	kNm/rad	-	133	133
			pump 2	c2	kNm/rad	-	21	22
Moment of inertia ³⁾ rotary group 1		J_{TW1}	kgm ²	0.0048	0.0089	0.0089		
			rotary group 2	J_{TW2}	kgm ²	0.0048	0.0048	0.0089
Maximum angular a	cceleratio	n ⁴⁾		α	rad/s ²	28000	22000	22000
Case Volume				V	L	2.8	2.9	3.0
Mass approx. (witho	ut throug	h driv	e)	m	kg	90	93	97

1) The values are valid:

- for the optimum viscosity range from $\nu_{opt}\,{=}\,36$ to $16~mm^2/s$

- with hydraulic fluid based on mineral oils.

2) Without boost pump

3) Illustration of spring mass system:

	J _{TW1}	-	J _{TW2}		
 с1		c2			

4) The data are valid for values between the minimum required and maximum permissible speed.

Valid for external excitation (e. g. engine 2 to 8 times rotary frequency; cardan shaft twice the rotary frequency).

The limit value applies for a single pump only.

The load capacity of the connection parts must be considered.

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. We recommend testing the loads by means of experiment or calculation / simulation and comparison with the permissible values.

Permissible radial and axial forces of the drive shafts

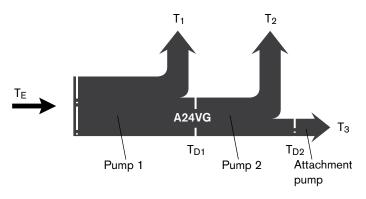
Size		NG		045-045	045-045	065-045	065-065
Drive shaft			in	1 3/8	1 1/2	1 1/2	1 1/2
Maximum radial force at distance a (from shaft collar)	F _q	F _{q max}	Ν	3474	2970	4670	4670
		а	mm	24	27	27	27
Maximum axial force	<u>-</u> , Пъ	+ F _{ax max}	Ν	3490	3490	4300	4300
F _{ax} ± <u></u>		- F _{ax max}	Ν	2310	2310	2700	2700

Note

Special requirements apply in the case of belt drive and cardan shaft. Please contact us.

Determining the operating characteristics

Flow	$q_v = \frac{V_g \bullet n \bullet \eta_v}{1000}$	1	V_{g} = Displacement per revolution in cm ³ Ap = Differential pressure in bar
Torque	$T = \frac{V_{g} \cdot \Delta p}{20 \cdot \pi \cdot \eta_{mh}}$	[Nm]	n = Speed in rpm η _ν = Volumetric efficiency
Power	$P = \frac{2\pi \cdot T \cdot n}{60000} = \frac{q_{v} \cdot \Delta p}{600 \cdot \eta_{t}}$	– [kW]	η_{mh} = Mechanical-hydraulic efficiency η_t = Total efficiency ($\eta_t = \eta_v \cdot \eta_{mh}$)


Permissible input and through-drive torques

Size			NG		045-045	065-045	065-065
		Nm	620	756	892		
at V _{g max} a	nd $\Delta p = 430$	bar ¹⁾					
Input torqu	ue at drive sh	aft, maximum ²⁾					
	V8	1 3/8 in	$T_{E max}$	Nm	970	970	-
	S9	1 1/2 in	T _{E max}	Nm	1125	1125	1125
Maximum through-drive torque T _{D1 max} N		Nm	495	495	495		
			T _{D2 max}	Nm	$T_{D2 perm} = T_{D1 max} - T_2$	$T_{D2 \text{ perm}} = T_{D1 \text{ max}} - T_2$	$T_{D2 perm} = T_{D1 max} - T_2$

1) Efficiency not considered

2) For drive shafts without radial force

Torque distribution

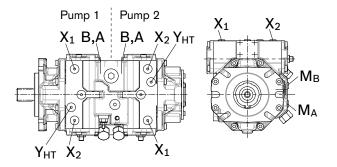
 $T_E \text{ consists as follows:} \\ T_E = T_1 + T_2 + T_3 \\ T_E < T_E \text{ max}$

HT - Hydraulic control, direct controlled

With the direct hydraulic control (HT), the output flow of the pump is controlled by a hydraulic control pressure, applied directly to the stroking piston through either port X_1 or X_2 .

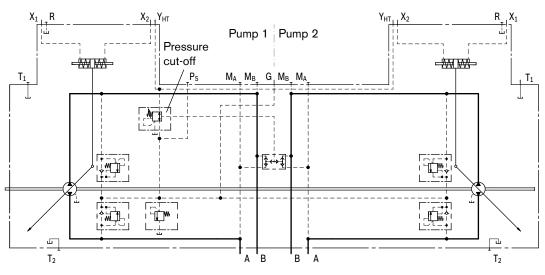
Flow direction is determined by which control pressure port is pressurized (refer to table below).

Pump displacement is infinitely variable and proportional to the applied control pressure, but is also influenced by system pressure and pump drive speed.


In order to use the optional built-in pressure cut-off valve, port Y_{HT} must be used as the control pressure source for the selected control module. See page 29 for a description of the pressure cut-off function.

Maximum permissible control pressure: 40 bar

Use of the HT control requires a review of the engine and vehicle parameters to ensure that the pump is set up correctly. We recommend that all HT applications be reviewed by a Bosch Rexroth application engineer.


Correlation Direction of rotation - Control - Flow direction

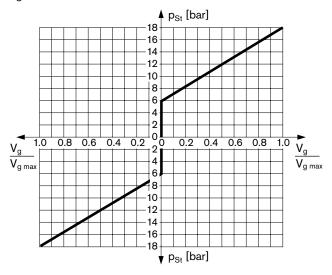
Direction of rotation	clockwise	clockwise				counter-clockwise			
Pump	Pump 1	Pump 1		Pump 2		Pump 1		Pump 2	
Control pressure	X ₁	X ₂	X ₁	X ₂	X ₁	X ₂	X ₁	X ₂	
Flow direction	B to A	A to B	A to B	B to A	A to B	B to A	B to A	A to B	
Operating pressure	M _A	M _B	MB	M _A	M _B	M _A	M _A	MB	

Schematic

Illustration with service line ports on left side

Note

The combination and operation of all controls must be considered in the complete system!


HP - Proportional control hydraulic, pilot-pressure related

The output flow of the pump is infinitely variable between 0 to 100 %, proportional to the difference in pilot pressure applied to the two control ports (Y_1 and Y_2).

The pilot signal, coming from an external source, is a pressure signal. Flow is negligible, as the pilot signal acts only on the spool of the control valve.

This valve spool then directs control oil into and out of the stroking cylinder to adjust pump displacement as required.

A feedback lever, connected to the stroking piston maintains the pump flow for any given pilot signal within the control range.

V_g = Displacement at p_{St}

 $V_{g max} = Displacement at p_{St} = 18 bar$

Pilot signal $p_{St} = 6$ to 18 bar (at port Y_1, Y_2)

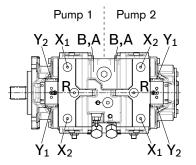
Beginning of control at 6 bar

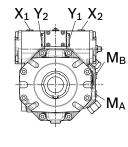
End of control at 18 bar (maximum displacement Vg max)

Note

In the neutral position, the HP control module must be vented to reservoir via the external pilot control device.

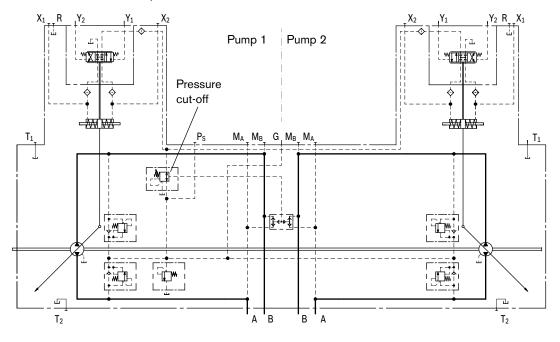
Note


The spring return feature in the control module is not a safety device

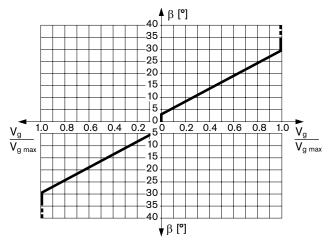

The control module can stick in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the control will no longer respond correctly to the operator's commands.

Check whether the application on your machine requires additional safety measures, in order to bring the driven actuator into a controlled and safe position (immediate stop). If necessary, make sure these are properly implemented.

HP - Proportional control hydraulic, pilot-pressure related


Correlation Direction of rotation	- Control - Fl	ow directio	n						
Direction of rotation	clockwise				counter-c	counter-clockwise			
Pump	Pump 1		Pump 2		Pump 1	Pump 1		Pump 2	
Pilot signal	Y ₁	Y ₂	Y ₁	Y ₂	Y ₁	Y ₂	Y ₁	Y ₂	
Control pressure	X ₂	X ₁	X ₂	X ₁	X ₂	X ₁	X ₂	X ₁	
Flow direction	A to B	B to A	B to A	A to B	B to A	A to B	A to B	B to A	
Operating pressure	MB	M _A	M _A	MB	M _A	MB	M _B	M _A	

Schematic


Illustration with service line ports on left side

HW - Proportional control hydraulic, mechanical servo

The output flow of the pump is infinitely variable between 0 to 100 %, proportional to the swivel angle of the control lever between 0° and $\pm 29^{\circ}$ from the spring centered zero flow position.

A feedback lever, connected to the stroking piston maintains the pump flow for any given position of the control lever between 0° and 29°.

Swivel angle β at the control lever for pump displacement change:

Start of control at $\beta = 3^{\circ}$

End of control $\beta = 29^{\circ}$ (maximum displacement V_{g max})

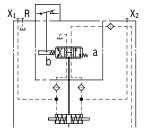
Mechanical stop for β : ±40°

The maximum required torque at the lever is 170 Ncm. To prevent damage to the HW control module, a positive mechanical stop must be provided for the HW control lever.

Note

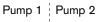
Spring centering enables the pump, depending on pressure and speed, to move automatically to the neutral position ($V_g = 0$) as soon as there is no longer any torque on the control lever of the HW control module (regardless of deflection angle).

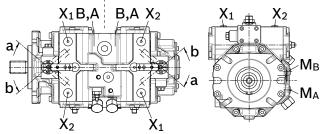
Variation: neutral position switch


The switch contact in the neutral position switch is closed when the control lever on the HW control module is in its neutral position. The switch opens when the control lever is moved out of neutral in either direction.

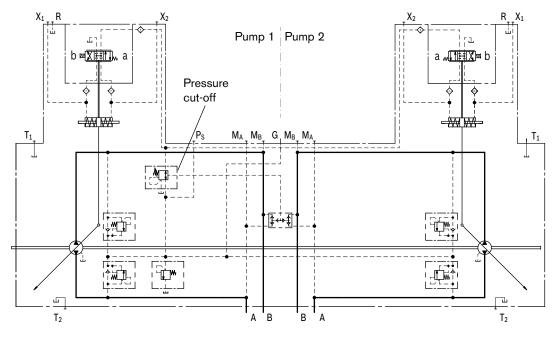
Thus, the neutral position switch provides a monitoring function for drive units that require the pump to be in the neutral position during certain operating conditions (e. g. starting diesel engines).

Technical data, neutral position switch


	P
Load capacity	20 A (continuous), without switching operating
Switching capacity	15 A / 32 V (resistive load)
	4 A / 32 V (inductive load)
Connector design	DEUTSCH DT04-2P-EP04 (mating connector, see page 33)

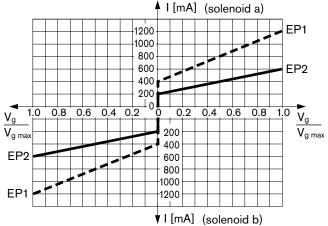

Schematic with neutral position switch

HW - Proportional control hydraulic, mechanical servo


Correlation Direction of rotation -	Control - El	ow direction	,					
Direction of rotation clockwise counter-clockwise								
Pump	Pump 1	Pump 2		Pump 1	Pump 1		Pump 2	
Lever direction	а	b	a	b	а	b	a	b
Control pressure	X ₂	X ₁						
Flow direction	A to B	B to A	A to B	B to A	B to A	A to B	B to A	A to B
Operating pressure	M _B	M _A	M _B	M _A	M _A	MB	M _A	M _B

Schematic

Illustration with service line ports on left side


EP - Proportional control electric

The output flow of the pump is infinitely variable between 0 to 100 %, proportional to the electrical current supplied to solenoid a or b.

The electrical energy is converted into a force acting on the spool of the control valve.

This valve spool then directs control oil into and out of the stroking cylinder to adjust pump displacement as required.

A feedback lever, connected to the stroking piston maintains the pump flow for any given current within the control range.

Standard

Proportional solenoid without manual override.

On request

Proportional solenoid with manual override and spring return.

Technical data, solenoid

	EP1	EP2				
Voltage	12 V (±20 %)	24 V (±20 %)				
Control current						
Beginning of control at $V_g = 0$	400 mA	200 mA				
End of control at $V_{g max}$	1200 mA	600 mA				
Limiting current	1.54 A	0.77 A				
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω				
Dither frequency	100 Hz	100 Hz				
Duty cycle	100 %	100 %				
Type of protection, see connector design on page 33						

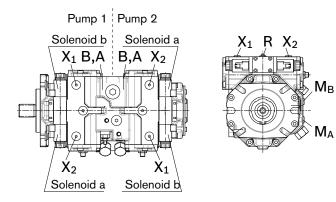
The following electronic controllers and amplifiers are available for controlling the proportional solenoids:

– BODAS	controller RC
---------	---------------

Series 20			RE 95200
Series 21			RE 95201
Series 22			RE 95202
Series 30		RE 95203,	RE 95204
and applica	ation software		
– Analog am	plifier RA		RE 95230

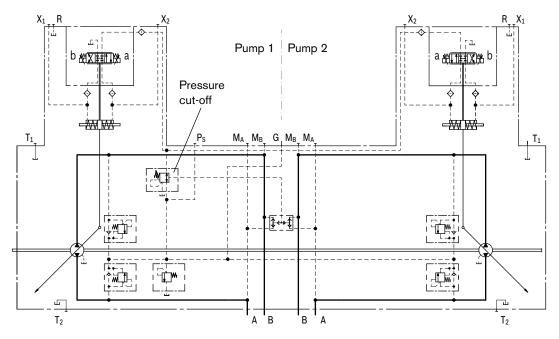
Further information can also be found on the Internet at www.boschrexroth.com/mobilelektronik.

Note


The spring return feature in the control module is not a safety device

The control module can stick in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the control will no longer respond correctly to the operator's commands.

Check whether the application on your machine requires additional safety measures, in order to bring the driven actuator into a controlled and safe position (immediate stop). If necessary, make sure these are properly implemented.


EP – Proportional control electric

Correlation Direction of rotation -	Control - Fl	ow directio	n						
Direction of rotation	clockwise	clockwise				counter-clockwise			
Pump	Pump 1	np 1 Pump 2		Pump 2 Pump 1			Pump 2		
Actuation of solenoid	a	b	а	b	а	b	а	b	
Control pressure	X ₂	X ₁	X ₂	X ₁	X ₂	X ₁	X ₂	X ₁	
Flow direction	A to B	B to A	B to A	A to B	B to A	A to B	A to B	B to A	
Operating pressure	MB	M _A	M _A	MB	M _A	MB	MB	M _A	

Schematic

Illustration with service line ports on left side

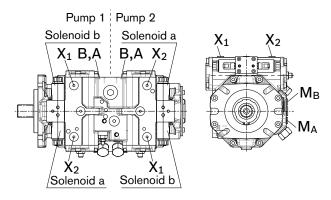
EZ - Two-point control electric

By energizing either switching solenoid a or b, internal control pressure is connected directly to the stroking piston and the pump swivels to maximum displacement. With the EZ control, pump flow is switchable between $V_g = 0$ and $V_{g max}$. Flow direction is determined by which solenoid is energized.

Standard

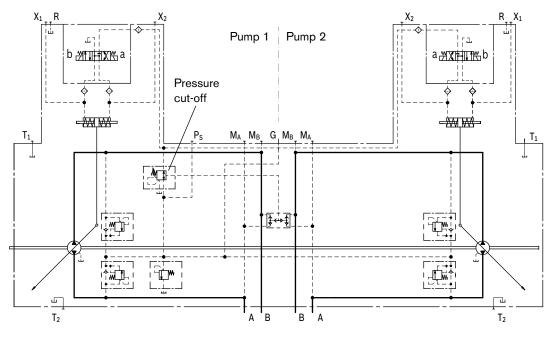
Switching solenoid without manual override.

On request


Switching solenoid with manual override and spring return.

Technical data, solenoid

	EZ1	EZ2					
Voltage	12 V (±20 %)	24 V (±20 %)					
Neutral position $V_g = 0$	de-energized	de-energized					
Displacement V _{g max}	energized	energized					
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω					
Nominal power	26.2 W	26.5 W					
Minimum required current	1.32 A	0.67 A					
Duty cycle	100 %	100 %					
Type of protection see connector design on page 33							


Correlation Direction of rotation - Control - Flow direction

Direction of rotation	ation clockwise counter-clockwise			clockwise				
Pump	Pump 1	Pump 2 Pu		Pump 1		Pump 2		
Actuation of solenoid	а	b	а	b	а	b	а	b
Control pressure	X ₁	X ₂	X ₁	X ₂	X ₁	X ₂	X ₁	X ₂
Flow direction	B to A	A to B	A to B	B to A	A to B	B to A	B to A	A to B
Operating pressure	M _A	M _B	M _B	M _A	M _B	M _A	M _A	M _B

Schematic

Illustration with service line ports on left side

Note

The combination and operation of all controls must be considered in the complete system!

EV - Electric control, direct controlled

With the direct electric control (EV), the output flow of the pump is infinitely variable between 0 to 100 %, controlled by the control pressure of the pressure reducing valve. This control pressure level is proportional to the electric current, applied to the solenoid of the pressure reducing valve. This control pressure is then connected directly to the stroking cylinder of the pump by energizing either switching solenoid a or b on the EV control module, which determines the direction of the pump flow. The resulting pump displacement at a certain control pressure is also influenced by pump drive speed and operating pressure.

Technical data, pressure reducing valve

	EV1	EV2					
Voltage	12 V	24 V					
Control current							
Beginning of control at $V_g = 0$	515 mA	255 mA					
End of control at $V_{g max}$	990 mA	495 mA					
Limiting current	1.54 A	0.77 A					
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω					
Dither frequency	100 Hz	100 Hz					
Duty cycle	100%	100%					
Type of protection see connector design on page 33							

Depending on the operating point, the specified values may vary slightly.

The following electronic controllers and amplifiers are available for controlling the proportional solenoids:

- BODAS controller RC

Series 20			RE 95200
Series 21			RE 95201
Series 22			RE 95202
Series 30		RE 95203,	RE 95204
and applica	ation software		

- Analog amplifier RA_____ RE 95230

Further information can also be found on the Internet at www.boschrexroth.com/mobile-electronics.

Correlation

Direction of rotation - Control - Flow direction

Direction of rotation	clockwise	clockwise				counter-clockwise			
Pump	Pump 1	Pump 1 Pump 2			Pump 1		Pump 2		
Actuation of solenoid	a	b	a	b	а	b	a	b	
Control pressure	X ₁	X ₂	X ₁	X ₂	X ₁	X ₂	X ₁	X ₂	
Flow direction	B to A	A to B	A to B	B to A	A to B	B to A	B to A	A to B	
Operating pressure	M _A	M _B	M _B	M _A	M _B	M _A	M _A	M _B	

Technical data, solenoid

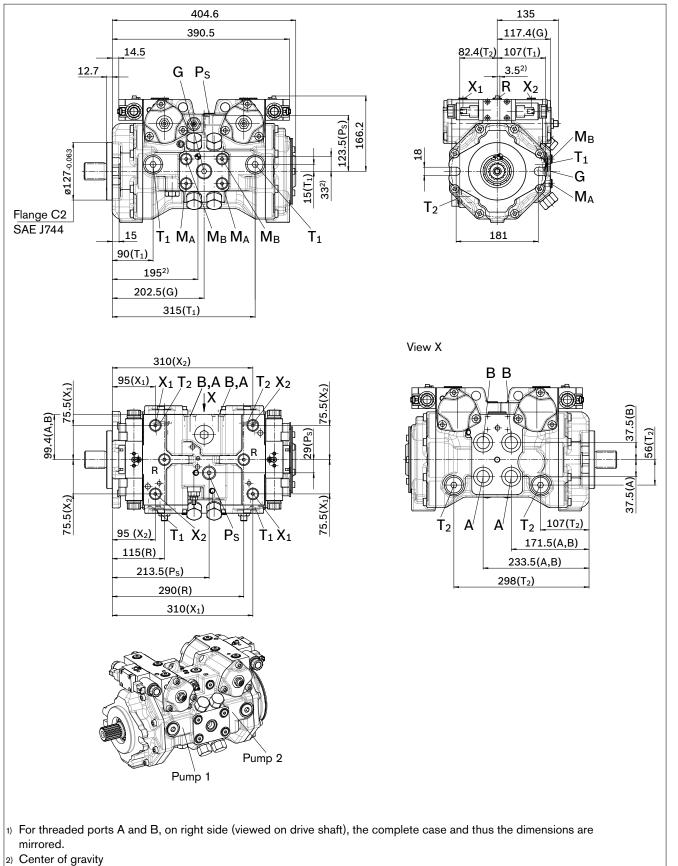
	EV1	EV2					
Voltage	12 V (±20 %)	24 V (±20 %)					
Neutral position $V_g = 0$	de-energized	de-energized					
Displacement V _g	energized	energized					
Nominal resistance (at 20 °C)	5.5 Ω	21.7 Ω					
Nominal power	26.2 W	26.5 W					
Minimum required current	1.32 A	0.67 A					
Duty cycle	100%	100%					
Type of protection see connector design on page 33							

Standard

Switching solenoid without manual override.

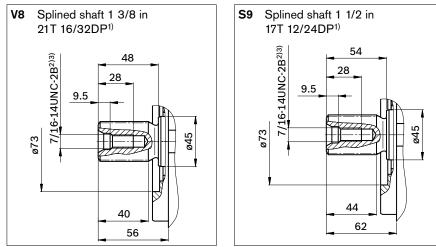
On request

Switching solenoid with manual override and spring return.


Note

The combination and operation of all controls must be considered in the complete system!

EP – Proportional control electric


Threaded ports A and B, on left side (viewed on drive shaft)¹⁾

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Drive shafts

Ports

Designation	Port for	Standard ⁴⁾	Size ³⁾	Maximum	State ⁸⁾	
				pressure [bar] ⁵⁾	Pump 1	Pump 2
А, В	Service line	ISO 6149	M27 x 2; 19 deep	500	0	0
T ₁	Drain line	ISO 6149	M27 x 2; 19 deep	3	X ⁶⁾	X ⁶⁾
T ₂	Drain line	ISO 6149	M27 x 2; 19 deep	3	X ⁶⁾	O ⁶⁾
R	Air bleed	ISO 6149	M14 x 1.5; 11.5 deep	3	Х	Х
X ₁ , X ₂	Control pressure (upstream of orifice)	ISO 6149	M14 x 1.5; 11.5 deep	40	Х	Х
X ₁ , X ₂	Control pressure (upstream of orifice, HT only)	ISO 6149	M14 x 1.5; 11.5 deep	40	0	0
X ₃ , X ₄ ⁷⁾	Stroking chamber pressure	ISO 6149	M14 x 1.5; 11.5 deep	40	Х	Х
G	Boost pressure	ISO 6149	M22 x 1.5; 17 deep	40	(C
Ps	Pilot pressure, inlet	ISO 6149	M18 x 1.5; 14.5 deep	40	2	X
Y _{HT}	Pilot pressure, outlet (HT only)	ISO 6149	M14 x 1.5; 11.5 deep	40	0	0
M _A , M _B	Measuring pressure A, B	ISO 6149	M14 x 1.5; 11.5 deep	500	Х	Х
Y ₁ , Y ₂	Pilot signal (HP only)	ISO 6149	M14 x 1.5; 11.5 deep	40	0	0

1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Thread according to ASME B1.1

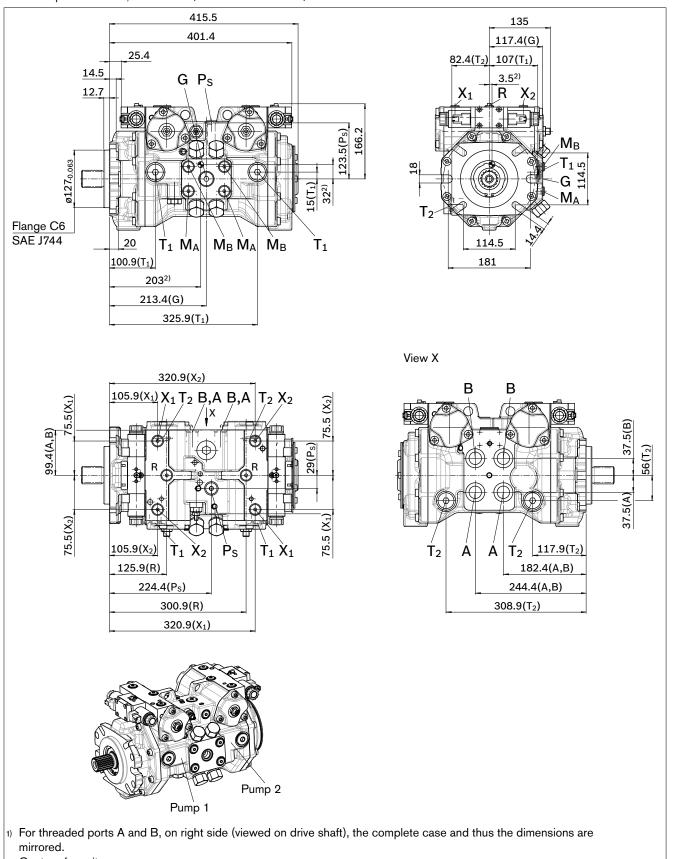
3) Observe the general instructions on page 38 for the maximum tightening torques.

4) The spot face can be deeper than specified in the appropriate standard.

5) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

6) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on pages 36 and 37).

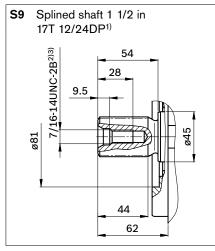
7) Optional, see page 31


8) O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

EP – Proportional control electric

Threaded ports A and B, on left side (viewed on drive shaft)¹⁾


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

2) Center of gravity

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports

Designation	Port for	Standard ⁴⁾	Size ³⁾	Maximum	Sta	te ⁸⁾
				pressure [bar] ⁵⁾	Pump 1	Pump 2
A, B	Service line	ISO 6149	M27 x 2; 19 deep	500	0	0
T ₁	Drain line	ISO 6149	M27 x 2; 19 deep	3	X ⁶⁾	X ⁶⁾
T ₂	Drain line	ISO 6149	M27 x 2; 19 deep	3	X ⁶⁾	O ⁶⁾
R	Air bleed	ISO 6149	M14 x 1.5; 11.5 deep	3	Х	Х
X ₁ , X ₂	Control pressure (upstream of orifice)	ISO 6149	M14 x 1.5; 11.5 deep	40	Х	Х
X ₁ , X ₂	Control pressure (upstream of orifice, HT only)	ISO 6149	M14 x 1.5; 11.5 deep	40	0	0
X ₃ , X ₄ ⁷⁾	Stroking chamber pressure	ISO 6149	M14 x 1.5; 11.5 deep	40	Х	Х
G	Boost pressure	ISO 6149	M22 x 1.5; 17 deep	40	C)
Ps	Pilot pressure, inlet	ISO 6149	M18 x 1.5; 14.5 deep	40	>	(
Y _{HT}	Pilot pressure, outlet (HT only)	ISO 6149	M14 x 1.5; 11.5 deep	40	0	0
M _A , M _B	Measuring pressure A, B	ISO 6149	M14 x 1.5; 11.5 deep	500	Х	Х
Y ₁ , Y ₂	Pilot signal (HP only)	ISO 6149	M14 x 1.5; 11.5 deep	40	0	0

1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Thread according to ASME B1.1

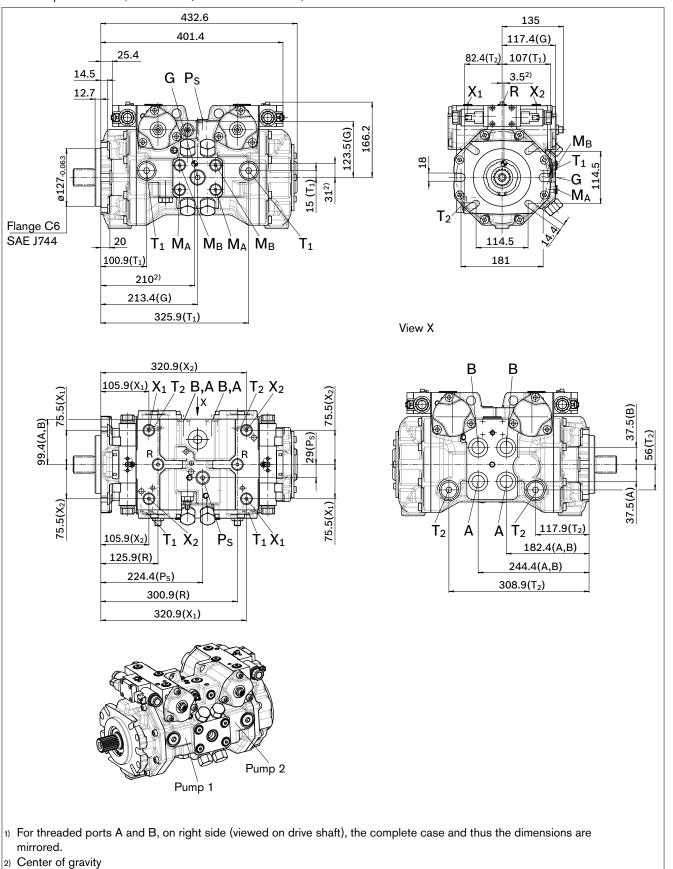
3) Observe the general instructions on page 38 for the maximum tightening torques.

4) The spot face can be deeper than specified in the appropriate standard.

5) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

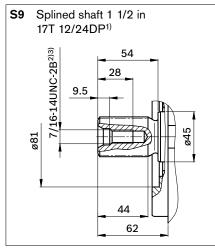
6) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on pages 36 and 37).

7) Optional, see page 31


8) O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

EP – Proportional control electric


Threaded ports A and B, on left side (viewed on drive shaft)¹⁾

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports

Designation	Port for	Standard ⁴⁾	Size ³⁾	Maximum	State ⁸⁾		
				pressure [bar] ⁵⁾	Pump 1	Pump 2	
А, В	Service line	ISO 6149 ⁷⁾	M27 x 2; 19 deep	500	0	0	
T ₁	Drain line	ISO 6149 ⁷⁾	M27 x 2; 19 deep	3	X ⁶⁾	X ⁶⁾	
T ₂	Drain line	ISO 6149 ⁷⁾	M27 x 2; 19 deep	3	X ⁶⁾	O ⁶⁾	
R	Air bleed	ISO 6149 ⁷⁾	M14 x 1.5; 11.5 deep	3	Х	Х	
X ₁ , X ₂	Control pressure (upstream of orifice)	ISO 6149 ⁷⁾	M14 x 1.5; 11.5 deep	40	Х	Х	
X ₁ , X ₂	Control pressure (upstream of orifice, HT only)	ISO 6149 ⁷⁾	M14 x 1.5; 11.5 deep	40	0	0	
X ₃ , X ₄ ⁷⁾	Stroking chamber pressure	ISO 6149 ⁷⁾	M14 x 1.5; 11.5 deep	40	Х	Х	
G	Boost pressure	ISO 6149 ⁷⁾	M22 x 1.5; 17 deep	40	C)	
Ps	Pilot pressure, inlet	ISO 6149 ⁷⁾	M18 x 1.5; 14.5 deep	40	>	(
Y _{HT}	Pilot pressure, outlet (HT only)	ISO 6149 ⁷⁾	M14 x 1.5; 11.5 deep	40	0	0	
M _A , M _B	Measuring pressure A, B	ISO 6149 ⁷⁾	M14 x 1.5; 11.5 deep	500	Х	Х	
Y ₁ , Y ₂	Pilot signal (HP only)	ISO 6149 ⁷⁾	M14 x 1.5; 11.5 deep	40	0	0	
	_						

1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Thread according to ASME B1.1

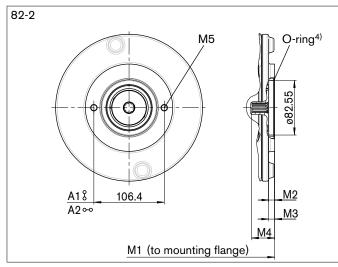
3) Observe the general instructions on page 38 for the maximum tightening torques.

4) The spot face can be deeper than specified in the appropriate standard.

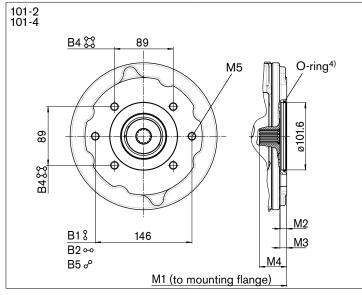
5) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

6) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on pages 36 and 37).

7) Optional, see page 31


8) O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)


Through drive dimensions

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Flange SAE J7	744 ¹⁾		Coupling for splined sh	aft ²⁾			
	Mounting va	riant					
Diameter	Symbol ³⁾	Designation	Diameter	Designation	045	065	
Without throug	gh drive				•	•	0000
82-2 (A)	8	A1	5/8 in 9T 16/32DP	S2	0	0	A1S2
			3/4 in 11T 16/32DP	S3	0	0	A1S3
	~~	A2	5/8 in 9T 16/32DP	S2	0	0	A2S2
			3/4 in 11T 16/32DP	S3	0	0	A2S3
101-2 (B)	8	B1	7/8 in 13T 16/32DP	S4	0	0	B1S4
			1 in 15T 16/32DP	S5	0	0	B1S5
	~	B2	7/8 in 13T 16/32DP	S4	•	0	B2S4
			1 in 15T 16/32DP	S5	•	0	B2S5
	٥ ⁰	B5	7/8 in 13T 16/32DP	S4	0	0	B5S4
			1 in 15T 16/32DP	S5	0	0	B5S5
101-4 (B)	53	B4	7/8 in 13T 16/32DP	S4	0	0	B4S4
			1 in 15T 16/32DP	S5	0	0	B4S5

NG	M1 ⁵⁾	M2	М3	M4	M5 ⁶⁾
045-045	412.6	9	9.4	35	M10 x 1.5;
065-065	447.4	9	9.4	35	13 deep
065-045	423.5	9	9.4	35	

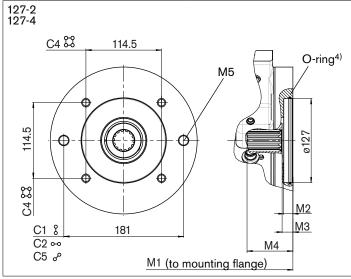
NG	M1 ⁵⁾	M2	M3	M4	M5 ⁶⁾
045-045	412.6	10	15	38	M12 x 1.75;
065-065	447.4	10	15	38	16 deep
065-045	423.5	10	15	38	

1) The through-drive flange is only supplied with the fastening thread corresponding to the ordering code designation.

2) Coupling for splined shaft according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

3) Mounting drillings pattern viewed on through drive with control at top

4) O-ring included in the delivery contents


5) Installation length M1 is valid for standard mounting flange (without integrated boost pump).

6) Thread according to DIN 13, observe the general instructions on page 38 for the maximum tightening torques.

Through drive dimensions

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Flange SAE J7	744 ¹⁾		Coupling for splined	Coupling for splined shaft ²⁾			
	Mounting va	riant					
Diameter	Symbol ³⁾	Designation	Diameter	Designation	045	065	
127-2 (C)	8	C1	1 in 15T 16/32	DP S5	0	0	C1S5
			1 1/4 in 14T 12/24E	DP S7	-	0	C1S7
	~~	C2	1 in 15T 16/32	DP S5	0	0	C2S5
			1 1/4 in 14T 12/24E	DP S7	-	0	C2S7
	م٥	C5	1 in 15T 16/32	DP S5	0	0	C5S5
			1 1/4 in 14T 12/24E	DP S7	-	0	C5S7
127-4 (C)	ŝ	C4	1 in 15T 16/32	DP S5	0	0	C4S5
			1 1/4 in 14T 12/24E	DP S7	-	0	C4S7

		M2	МЗ	M4
045-045			13	53
065-065	462.4	14	13	53
065-045	438.5	14	13	53
M5 ⁶⁾	2-hole		4-hole	

IVI D ^o	2-noie	4-noie
045-045 065-065	M16 x 2;	M12 x 1.75;
065-065	19 deep	19 deep
065-045		
	1	

1) The through-drive flange is only supplied with the fastening thread corresponding to the ordering code designation.

2) Coupling for splined shaft according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

3) Mounting drillings pattern viewed on through drive with control at top

4) O-ring included in the delivery contents

5) Installation length M1 is valid for standard mounting flange (without integrated boost pump).

6) Thread according to DIN 13, observe the general instructions on page 38 for the maximum tightening torques.

Overview of mounting options

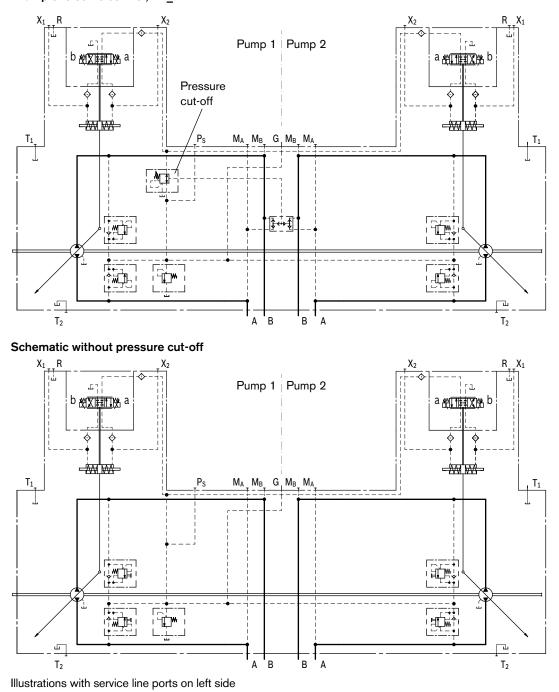
Through drive ¹⁾			Mounting option – additional pump						
Flange	Coupling for splined shaft	Short code	A4VG/40 NG (shaft)	A4VG/32 NG (shaft)	A10VG NG (shaft)	A10VO/31 NG (shaft)	A10VO/53 NG (shaft)	A11VO NG (shaft)	External gear pump ²⁾
82-2 (A)	5/8 in	A_S2	-	_	-	18 (U)	10 (U)	-	Series F Size 4 to 22
	3/4 in	A_S3	-	-	-	18 (S, R)	10 (S) 18 (S, R)	-	-
101-2 (B)	7/8 in	B_S4	_	-	18 (S)	28 (S, R) 45 (U, W)	28 (S, R) 45 (U, W)	-	Series N Size 20 to 36 Series G Size 32 to 50
	1 in	B_S5	-	28 (S)	28,45 (S)	45 (S, R)	45 (S,R) 60 (U,W)	40 (S)	-
101-4 (B)	7/8 in	B4S4	-	-	-	-	-	-	-
	1 in	B4S5	-	-	-	-	-	-	-
127-2 (C)	1 in	C_S5	-	40 (U)	-	71 (U, W)	-	-	_
	1 1/4 in	C_S7	45 (S7) 65 (S7)	40, 56, 71 (S)	63 (S)	71 (S,R) 100 (U,W)	85 (U, W)	60 (S)	-
127-4 (C)	1 1/4 in	C4S7	65 (S7)	71 (S)	-	-	60 (S, R)	-	-

1) Availability of the individual sizes, see ordering code on page 4.

2) Bosch Rexroth recommends special versions of the gear pumps. Please contact us.

Pressure cut-off

The pressure cut-off is a pressure control which, after reaching the set pressure, adjusts the displacement of the pump back to $V_{g\mbox{ min}}.$

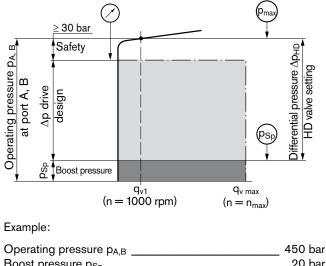

This valve prevents the operation of the high-pressure relief valves when accelerating or decelerating.

The high-pressure relief valves protect against the pressure spikes which occur during fast swiveling of the swashplate and limit the maximum pressure in the system.

The setting range of the pressure cut-off may be anywhere within the entire operating pressure range. However, it must be set 30 bar lower than the setting of the high-pressure relief valves (see setting diagram, page 30).

Please state the setting value of the pressure cut-off in plain text when ordering.

Schematic with pressure cut-off Example: electric control, EP_D


High-pressure relief valves

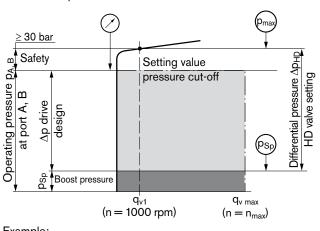
The four high-pressure relief valves protect the hydrostatic transmission (pump and motor) from overload. They limit the maximum pressure in the respective high-pressure line and serve simultaneously as boost valves.

High-pressure relief valves are not working valves and are only suitable for pressure spikes or high rates of pressure change.

Setting diagram

Version without pressure cut-off

 Operating pressure $p_{A,B}$ 450 bar


 Boost pressure p_{Sp} 20 bar

 Differential pressure Δp_{HD} 430 bar

 PA B
 P_{Sp}

 $\begin{array}{rcl} p_{A,B} \\ 450 \text{ bar} \end{array} - \begin{array}{r} p_{Sp} \\ 20 \text{ bar} \end{array} = \begin{array}{r} \Delta p_{HD} \\ \textbf{430 bar} \end{array}$

Version with pressure cut-off

Example:

Operating	g pressure	р _{А,В}		450 bar
Boost pre	essure p _{Sp}			20 bar
Differentia	460 bar			
р _{А,В} 450 bar	_ p _{Sp} 20 bar	+ Safety 30 bar	= $\frac{\Delta p_{HD}}{460 \text{ bar}}$	

When ordering, state differential pressure setting in plain text: The following values are available for selection of the differential pressure setting (fixed setting):

Preferred values [bar]: 400, 410, 420, 430, 440, 450, 460, 470 Optional values [bar]: 300, 320, 340, 360, 380

If not specified in the order, valves will be set to the differential pressure $\Delta p = 420$ bar.

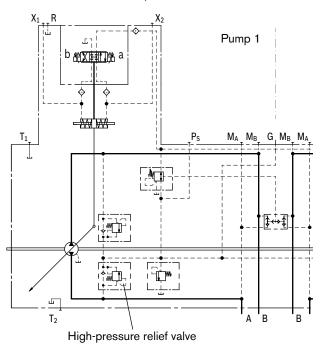
High-pressure relief valve A

Differential pressure setting	$\Delta p_{HD} = \dots$ bar
-------------------------------	-----------------------------

Cracking pressure of the HD valve (at $q_{V 1}$) _____p_{max} = ... bar $(p_{max} = \Delta p_{HD} + p_{Sp})$

High-pressure relief valve B

Differential pressure setting $\Delta p_{HD} = ...$ bar

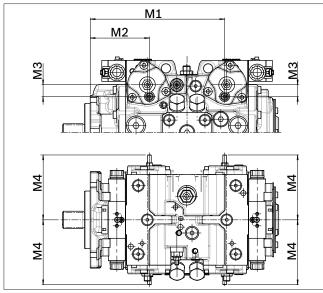

Cracking pressure of the HD valve (at $q_{V 1}$) _____p_{max} = ... bar $(p_{max} = \Delta p_{HD} + p_{Sp})$

Note

The valve settings are made at n = 1000 rpm and at $V_{g max} (q_{v 1})$. There may be deviations in the cracking pressures with other operating parameters.

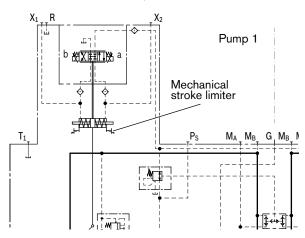
Schematic

Illustration with service line ports on left side


Mechanical stroke limiter

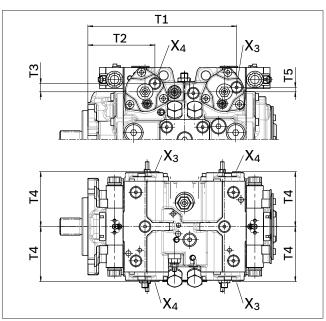
The mechanical stroke limiter is an auxiliary function allowing the maximum displacement of the pump to be steplessly reduced, regardless of the control module used.

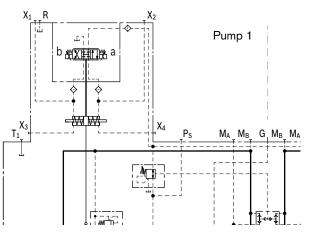
With two threaded pins per pump, the stroke of the stroke piston and thus the maximum swivel angle of each pump is limited.


Dimensions

		M2	M3	M4
045-045 2	85.4	119.6	26.1	143
065-065 2	96.3	130.6	26.1	143
065-045 2	96.3	130.6	26.1	143

Schematic


Illustration with service line ports on left side


Ports X₃ and X₄ for stroking chamber pressure

Dimensions

NG	T1	T2	Т3	T4	T5
045-045	316.8	136.8	18.3	117	9.7
065-065	327.7	147.7	18.3	117	9.7
065-045	327.7	147.7	18.3	117	9.7

Schematic Illustration with service line ports on left side

Designation	Port for	Standard ⁾	Size ²⁾	Maximum	Sta	te ⁴⁾
				pressure [bar] ³⁾	Pump 1	Pump 2
X ₃ , X ₄	Stroking chamber pressure	ISO 6149	M14 x 1.5; 11.5 deep	40	Х	Х

1) The spot face can be deeper than specified in the appropriate standard.

2) Observe the general instructions on page 38 for the maximum tightening torques.

3) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
 4) X = Plugged (in normal operation)

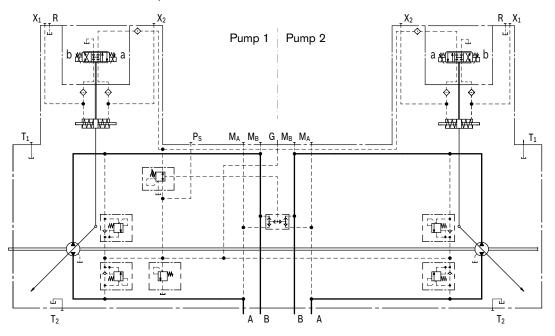
Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Filtration boost circuit / external supply

Version E External supply

This variation should be used in versions **without** integrated boost pump.

Supply comes from port G.


Filter arrangement

____separate

To ensure the functional reliability, maintain the required cleanliness level for the boost fluid fed in at port G (see page 7).

Schematic version E

Illustration shows service line ports on left side

Connector for solenoids

DEUTSCH DT04-2P-EP04

Molded, 2-pin, without bidirectional suppressor diode

There is the following type of protection with mounted mating connector:

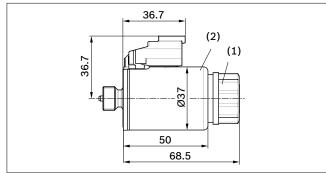
IP67 _____DIN/EN 60529

and IP69K _____ DIN 40050-9

Circuit symbol

Mating connector

DEUTSCH DT06-2S-EP04 Bosch Rexroth Mat. No. R902601804


Consisting of:

- 1 housing ______DT06-2S-EP04

DT designation

- 1 wedge ______W2S
- 2 sockets _____0462-201-16141

The mating connector is not included in the delivery contents. This can be supplied by Bosch Rexroth on request.

Changing connector orientation

If necessary, you can change the connector orientation by turning the solenoid housing.

To do this, proceed as follows:

- 1. Loosen the mounting nut (1) of the solenoid. To do this, turn the mounting nut (1) one turn counter-clockwise.
- 2. Turn the solenoid body (2) to the desired orientation.
- 3. Retighten the mounting nut. Tightening torque: 5+1 Nm. (size WAF 26, 12kt DIN 3124)

On delivery, the connector orientation may differ from that shown in the brochure or drawing.

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Speed sensor

With the speed sensor DSA mounted, a signal proportional to pump speed can be generated. The DSA sensor measures the speed and direction of rotation.

Ordering code, technical data, dimensions and details on the connector, plus safety instructions about the sensor can be found in the relevant data sheet (DSA – RE 95133).

The sensor is mounted on the port provided for this purpose with a mounting bolt.

Dimensions

Service line ports on left side

NG	Α	В	Number of teeth
045-045	5.5	127	32
065-065	5.5	137.9	45
065-045	5.5	137.9	45

Service line ports on right side

NG	Α	С	Number of teeth
045-045	5.5	278	32
065-065	5.5	288.9	45
065-045	5.5	288.9	32

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

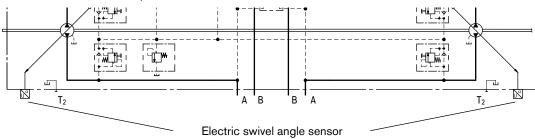
Swivel angle sensor

For the swivel angle indicator, the pump swivel angle is measured by an electric swivel angle sensor.

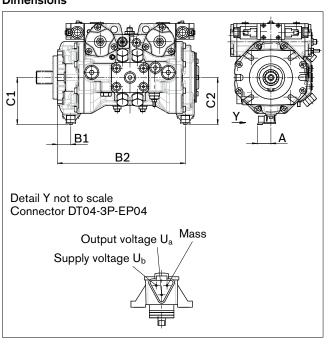
As an output parameter, the Hall-effect swivel angle sensor delivers a voltage proportional to the swivel angle (see table of output voltages).

Please contact us if the swivel angle sensor is used for control.

Characteristics				
Supply voltage U _b	10 to 30 V DC			
Output voltage U _a	1 V (V _{g max})	2.5 V (V _{g 0})	4 V (V _{g max})	
Reverse voltage protection	Short circ	uit-resistar	nt	
EMC resistance	Details or	request		
Operating temperature range	-40 °C to	+115 °C		
Vibration resistance sinusoidal vibration EN 60068-2-6	10 <i>g</i> / 5 to 2000 Hz			
Shock resistance continuous shock IEC 68-2-29	25 g			
Resistance to salt spray DIN 50 021-SS	96 h			
Type of protection with mounted mating connector		N/EN 605 DIN 40050		
Housing material	Plastic			


Output voltage

		Flow direction ¹⁾	Operating pressure	Output voltage
ition	N	B to A	M _A	> 2.5 V
of rotatio CW	A to B	M _B	< 2.5 V	
Direction of rotation	Ņ	A to B	M _B	> 2.5 V
Directio	B to A	M _A	< 2.5 V	


1) For flow direction, see controls

Schematic

Illustration with service line ports on left side

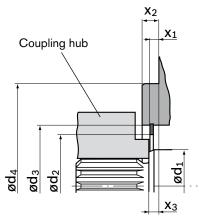
Dimensions

NG	A	B1	B2	C1	C2
045-045	37	35.9	325.2	134.8	134.8
065-065	37	39.4	348	134.8	134.8
065-045	37	39.4	336.6	134.8	134.8

Mating connector

DEUTSCH DT06-3S-EP04 Bosch Rexroth Mat. No. R902603524

Consisting of:	DT designation
– 1 housing	DT06-3S-EP04
– 1 wedge	W3S
– 3 sockets	0462-201-16141


The mating connector is not included in the delivery contents. This can be supplied by Bosch Rexroth on request.

Installation dimensions for coupling assembly

To ensure that rotating components (coupling hub) and fixed components (housing, circlip) do not come into contact with each other, the installation conditions described here must be observed. This depends on the pump size and the splined shaft.

SAE splined shaft (spline according to ANSI B92.1a)

The outer diameter of the shoulder on coupling hub must be smaller than the inner diameter of the circlip d_2 in the area near the drive shaft collar (dimension $x_2 - x_3$).

NG	Mounting flange	ød ₁		ød ₃	ød4	x ₁	x ₂	X ₃ (approx.)
45	127-2 (C)	45	50.5	73 ±0.1	127	0.1	12.7 _{-0.5}	8
65	127-2/4 (C)	45	58.5	81 ±0.1	127	6.4	12.7 _{-0.5}	8

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Installation instructions

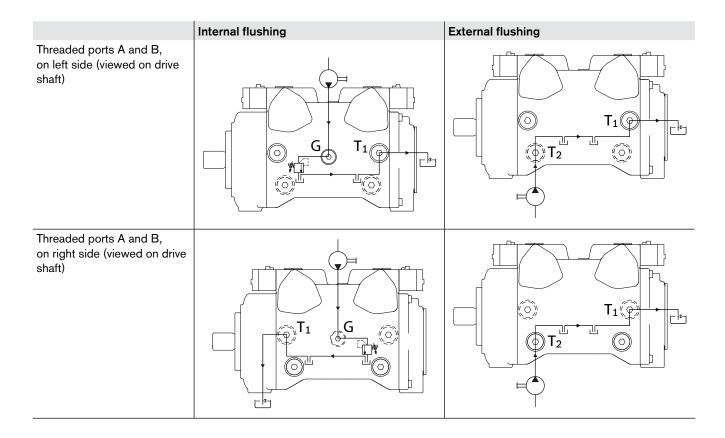
General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.

The case drain fluid in the pump housing must be directed to the reservoir via the highest available drain port (T_1, T_2) .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.


In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Connection of the drain line

Besides the actual case drain fluid, an additional cooling fluid flow is needed in the housing for lubricating and cooling the rotary group in the housing. To guarantee the flushing of both rotary groups, the connection specifications for the T-ports must be observed.

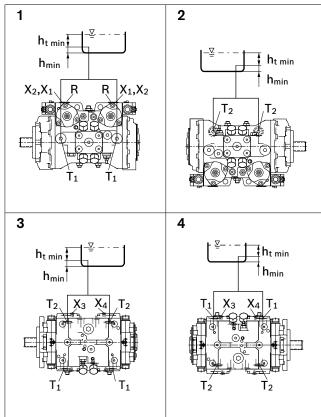
Internal flushing: If the integrated boost pressure valve is used, internal flushing is guaranteed.

External flushing: If the boost pressure is backed up with an external pressure-relief valve, external flushing of the pump housing via the T-ports will be necessary.

Installation instructions

Installation position

See the following examples 1 to 8 Further installation positions are possible upon request.

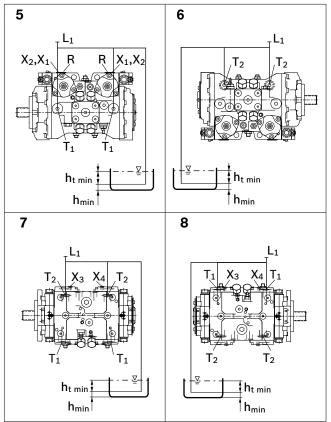

Recommended installation position: 1

Notes

- If it is not possible to fill the stroking chambers via X₁ to X₄ in the final installation position, this must be done prior to installation.
- To prevent unexpected actuation and damage, the stroking chambers must be bled via the ports X₁, X₂ or X₃, X₄ depending on the installation position.
- In certain installation positions, an influence on the control characteristics can be expected. Gravity, dead weight and case pressure can cause minor shifts in control characteristics and changes in response time.

Below-reservoir installation (standard)

Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.



Installation position	Bleeding the case	Bleeding the stroking chamber	Filling
1	R	X ₁ , X ₂	$T_1 + X_1 + X_2$
2	-	-	T ₂
3	-	X ₃ , X ₄	$T_2 + X_3 + X_4$
4	-	X ₃ , X ₄	$T_1 + X_3 + X_4$

Note instructions!

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

Installation position	Bleeding the case	Bleeding the stroking chamber	Filling
5	R	X ₁ , X ₂	$L_1 + X_1 + X_2$
6	L ₁ (T ₂)	-	L ₁ (T ₂)
7	L ₁ (T ₂)	X ₃ , X ₄	$L_1 (T_2) + X_3 + X_4$
8	L1 (T1)	X ₃ , X ₄	$L_1 (T_1) + X_3 + X_4$

Note instructions!

- L₁, L₂ Filling / air bleed
- R Air bleed port
- T₁, T₂ Drain port
- $\mathbf{h}_{t min}$ Minimum required immersion depth (200 mm)
- h_{min} Minimum required spacing to reservoir bottom (100 mm)

General instructions

- The pump A24VG is designed to be used in closed circuit.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified personnel.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e. g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports can only be used to accommodate hydraulic lines.

- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to ISO 13849.
- The following tightening torques apply:
 - Fittings:

Observe the manufacturer's instruction regarding tightening torques for the used fittings.

- Mounting bolts:

For mounting bolts with metric ISO thread according to DIN 13 or with thread according to ASME B1.1, we recommend checking the tightening torque in individual cases in accordance with VDI 2230.

- Female threads in the axial piston unit: The maximum permissible tightening torques M_{G max} are maximum values of the female threads and must not be exceeded. For values, see the following table.
- Threaded plugs:

For the metallic threaded plugs supplied with the axial piston unit, the required tightening torques of threaded plugs M_V apply. For values, see the following table.

Ports Standard	Size of thread	Maximum permissible tightening torque of the female threads M _{G max}	Required tightening torque of the threaded plugs M _V	WAF hexagon socket of the threaded plugs
ISO 6149	M14 x 1.5	80 Nm	45 Nm	6 mm
	M18 x 1.5	140 Nm	70 Nm	8 mm
	M22 x 1.5	210 Nm	100 Nm	10 mm
	M27 x 2	330 Nm	170 Nm	12 mm

Bosch Rexroth AG Mobile Applications Glockeraustraße 4 89275 Elchingen, Germany Tel. +49 7308 82-0 Fax +49 7308 7274 info.brm@boschrexroth.de www.boschrexroth.com/axial-piston-pumps © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.